
Exercise Set Solutions #7
“Discrete Mathematics” (2025)

E1. Compute the values for µ(10!), ϕ(10!), and µ(2025).

Solution: Since 10! = 28 · 34 · 52 · 7, there is at least one prime power with exponent strictly
larger than 1 and therefore µ(10!) = 0. Due to the prime factorization of 10 !, we get ϕ(10!) =
10!
(
1− 1

2

) (
1− 1

3

) (
1− 1

5

) (
1− 1

7

)
= 829440.

The prime factorization of 2021 is 34 × 52, therefore µ(2025) = 0.

E2. Show that n =
∑

d|n ϕ(d) and that ϕ(n) = n
∑

d|n
µ(d)
d .

Solution: Let p1, p2, . . . , pk ∈ Z≥1 be all the prime numbers dividing n. Then we know that

ϕ(n) = n
k∏

i=1

(
1− 1

pi

)

= n

1−
∑
i

1

pi
+

∑
1≤i<j≤k

1

pipj
−

∑
1≤i<j<k≤l

1

pipjpk
+ . . .

 .

The above sum is actually
∑

d|n
µ(d)
d . Indeed, µ(d) is zero if p2i | d for some i so the only terms

that appear are when d is a product of a subset of primes in p1, p2, . . . , pk. The second identity
then follows by applying the Mobius inversion formula with f(n) = n and g(n) = ϕ(n).

E3. Let σ(n) denote the sum of all positive divisors of a number n. For instance, σ(6) = 1+2+3+6 =
12. Prove that ϕ(n) + σ(n) ≥ 2n, for all n ∈ N, and characterize all n such that equality is
achieved.

Solution: Note that

σ(n) =
∑
d|n

d =
∑
d|n

n

d
= n

∑
d|n

1

d

Using Exercise 2 above, we get that

ϕ(n) + σ(n) = n
∑
d|n

µ(d) + 1

d

Since µ(m)+ 1 ≥ 1 for each m ∈ N, and since µ(1) = 1, we conclude the desired inequality. For
the case of equality, note that if n has at least two distinct prime factors p1, p2, then µ (p1p2) = 1,
and hence we obtain a non-trivial factor in the sum before. Hence, n = pk for a prime p is
necessary in order for equality to hold. On the other hand, since µ

(
p2
)
= 0, we get non-trivial

factors whenever k ≥ 2, and hence equality holds if and only if n = p, where p is prime.

E4. Let Λ(n) be a function defined for n ∈ Z≥1 by the rule∑
d|n

Λ(d) = logn



Show that

Λ(n) =

{
log p if n = pk for some prime number p and k ≥ 1

0 otherwise

We prove it by induction in the number of prime divisors of n (counting multiplicty). For
n = pk the statement follows easily. Let us assume that the statement is true for m = qb11 · · · qblr
with bi ̸= 0 for all i and

∑l
i=1 bi = K. Assume that n = pa11 · · · parr with ai ̸= 0 for all i and∑r

i=1 ai = K + 1. Then

log(n) =
∑
d|n

Λ(d) =
∑

d|pa11 ···par−1
r−1

Λ(d) +
∑

d|pa11 ···par−1
r

Λ(dpr).

Thus, we have that ∑
d|pa11 ···par−1

r

Λ(dpr) = log(n)− log(pa11 · · · par−1

r−1 ) = log(parr ).

By induction hypothesis, we have that∑
d|pa11 ···par−1

r

Λ(dpr) = Λ(n) + arΛ(pr).

Thus, using the base case, we get that Λ(n) = 0, concluding.
Note: The problem can also be solved by using Möbius inversion formula with the formula
defining Λ, and then developing what one gets from it.

E5. Let f, g : N → C be two functions. We define their Dirichlet product to be

f ∗ g(n) =
∑
d|n

f(d)g
(n
d

)
(a) Let the Dirichlet series associated with f, g be defined, respectively, as

F (s) =
∑
n≥1

f(n)

ns
, G(s) =

∑
n≥1

g(n)

ns

Suppose the sums defining F and G converge absolutely for all s > s0. Prove that the series

H(s) =
∑
n≥1

f ∗ g(n)
ns

converges absolutely for s > s0 as well, and prove that

H(s) = F (s)G(s)

(b) Let

ζ(s) =
∑
n≥1

n−s

denote the Riemann Zeta function. Conclude that

1

ζ(s)
=
∑
n≥1

µ(n)

ns

for all s > 1.
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Solution: (a) Let us show absolute convergence of H first: we have

∑
n≥1

|f ∗ g(n)|
ns

≤
∑
n≥1

∑
d|n

|f(d)|
∣∣∣g (n

d

)∣∣∣
n−s

=
∑
d≥1

|f(d)|

∑
k≥0

|g(k)|(dk)−s


=

∑
d≥1

|f(d)|d−s

∑
k≥1

|g(k)|k−s

 .

Since we know that both of the series above in the last equality converge absolutely for s > s0,
so does the original one. In order to prove the desired identity for H, one simply observes that

∑
n≥1

f ∗ g(n)
ns

=
∑
n≥1

(∑
dk=n

f(d)g(k)

)
n−s

=
∑
d≥1

f(d)

∑
k≥0

g(k)(dk)−s


=

∑
d≥1

f(d)d−s

∑
k≥1

g(k)k−s

 = F (s)G(s)

(b) Let us use part (a): since, by Möbius inversion, we have µ ∗ 1(n) = 1 if n = 1 and 0
otherwise, by part (a) we have

1 =
∑
n≥1

µ ∗ 1(n)
ns

= ζ(s)

∑
k≥1

µ(k)

ks


whenever s > 1 - here, we used the (not too hard to verify directly) fact that part (a) holds
with s0 = 1. This finishes the problem.
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